
Speaker Verification
W2021 214A Project

Sunay Bhat, Pong Chan

University of California, Los Angeles
sunaybhat1@ucla.edu, pongchan222@gmail.com

Abstract
Digital speech processing has been an expansive field of
research for many decades that has seen a wealth of new
approaches ranging from deep learning techniques to other
large scale data driven approaches in the last few years.
Modern day technologies generate tremendous amounts of
data to guide the design of such systems. At the same time,
users are growing more accustomed to having their speech and
voice interpreted in real-time with the advent of personal
assistants like Siri and Alexa. Speaker verification is an
important subset of this field which is specifically focused on
identifying the speaker or determining if the speaker is the
same given a reference.

In this paper, we explore a version of speech processing
in which we train and test a text-dependent classifier which
determines if two audio files are spoken by the same person in
both clean and babble background noise recordings. We will
cover a variety of features we attempted to use, from
spectrograms to Cepstrum Coefficients, as well as scoring
techniques in which we attempted novel approaches for
discriminating between same and different file sets. We will
share our final model and results, which utilize Mel Cepstrum
Coefficients, Dynamic Time Warping, and Mahalanobis
Distances to beat a baseline pitch detector. We will also spend
time discussing many techniques we tried that did not succeed,
opportunities for improvement, and intuition behind our
attempted approaches.

Index Terms: speaker verification, MFCCs, pitch, GMM,
HMM, K-means, Mahalanobis, DTW, FPR, FNR. EER,
spectrogram, babble

1. Introduction
Speaker identification, or specially in our case, verification, is
the task of determining whether a digital audio file is of the
same speaker as a reference file. For this project, a sample
classifier, training and testing data files, and a project outline
were provided along with relevant course materials and
instruction. The wav format audio files were of two types,
“clean” with little to no background noise, and “babble” which
contained conversational background noise, making the task
much harder (as opposed to white or other more general noise
types). The test data was segmented into two sets, one which
was all “clean” data files, and one “multi” set which was 50%
clean files and 50% babble files. These data sets were
combinations of two audio files with a binary label identifying
the pair as either the same (1) or different (0) speakers. The
test data was similarly segmented into two sets, except one
was clean data and one was only babble data. Labels were
similarly provided to verify results after classification and

generate relevant False Positive (FPR) and False Negative
(FNR) Rates. As a result, there were four baseline train/test
combinations: clean/clean, clean/babble, multi/clean, and
multi/babble. Results will be shared using the above notation
along with the error rate convention FPR%/FNR%.

A baseline sample classifier was included with pitch
detection. Table 1 below shows the baseline results that we
were asked to improve upon to determine the effectiveness of
our methods.

Table 1: Baseline FPR/FNR Error Rates
Clean/
Clean

Multi/
Clean

Clean/
Babble

Multi/
Babble

30%/
36%

46%/
37%

32%/
33%

43%/
42%

The provided scripts also included an Equal Error Rate
Computation for scoring mechanisms. When determining a
threshold in training, it is often important to balance FPR and
FNR, where one can trade between the two error rates by
moving the threshold as needed for the application. In general,
a good practice is to utilize the threshold in which the two
error rates equal each other, as can be seen in the Receiver
Operating Curves (ROC) in Figure 1.

Figure 1: EER Receiver Operating Curve

Our methodology will discuss utilization of this Equal
Error (EER) rate in more detail for feature selection, but it is
important to note that this metric is relevant as our label
quantities are highly mismatched. With 293 clean and 293
babble audio files and only 3-5 audio files per speaker, the
probability of the speakers being the same in a given
combination is quite low. This meant our training data sets
consisted of a majority of examples with different
speakers.One could get a decent Hamming error by trivially
declaring the majority of examples as different with a low

FPR and a high FNR, but this would be a poor metric of the
actual quality of the classifier. After making the brief mistake
of including the Hamming error, we quickly discarded any
consideration for it and focused on the valid metrics of FPR
and FNR only for testing.

2. Background and Strategy

2.1. Model Background

Speaker verification models can vary drastically based on the
application and techniques used. We will simplify it down into
a couple stages. First, features relevant to the application are
extracted. The literature is extensive, so we will not review the
many features that one can extract for speaker verification[1][2],
but we will briefly cover the features we tried in the next
section. For the baseline, we were provided with a script that
utilizes the multi-band summary correlogram-based pitch
detection method [3]. Pitch, or the fundamental frequency, is an
example of a commonly used and effective method of
distinguishing speakers as it varies significantly between
speakers [1]. In the baseline method, the mean of the pitch
across the audio file (from voiced sections), was returned into
a feature dictionary.

After feature extraction, the model is trained using any
number of scoring techniques. The literature indicated this
aspect of speaker verification is an extensive and complex
problem space[6]. For the baseline, the mean pitch from the
file pairs were subtracted, and the absolute value difference
was saved as the score. Using this single value score, it was
possible to compute the EER and set the threshold at that
point.

Finally, the model is tested on new data. In the baseline
case, the threshold was used to classify the computed scores in
the test data. The resulting prediction vector is compared to
the provided labels to determine the FPR and FNR results.

2.2. Strategy

Since we had limited time to work on this project, we wanted
to utilize our time efficiently. Our initial strategy was to
attempt pre-processing signals, to then explore and select
features, and develop a scoring system for our classifier.

The literature indicated the pre-processing methods and
features are well-known for this application[2]. A majority of
our time should be dedicated to develop a novel scoring
system.

After simple low-pass and band-pass filtering, we could
not effectively de-noise our signal. In fact, the results were
noticeably worse than the baseline results. We quickly moved
on to selecting features for our classifier, as well as the scoring
system that our classifier uses. In the following section, we
will explain our philosophy behind testing and choosing the
features and scoring system that we used.

3.Method

3.1 Feature Selection

The key to selecting features for this project is to make sure
that the feature inherently gives good distinction of the two
audio signals when they are spoken by different speakers.
Additionally, the feature should also recognize when the audio
signals are spoken by the same person with as little error as
possible. To understand what feature can bring these

properties, we had to first understand the physical properties
of speech signals in general.

There were some ideas that inspired us to evaluate
specific features. Theoretically speaking, autocorrelation of
the two time signals and pitch of the two signals should be
high if the two signals are correlated. That means that they
should be overlapped if they are voiced (periodic). We would
expect higher values when the speakers were the same, and
vice versa.

Another pool of methods that might be helpful is to
exploit image processing techniques. Although audio signals
are often perceived as 1D, spectroam, mel-spectrogram, and
other energy related plots are helpful when it comes to
generating a 2D image. We believed that utilizing 2D data
gave us more information so that there would be potentially
more information. We employed centroid matching and dither
correlation to align the spectrograms or mel-spectrograms of
the two audio files by weight for a valid comparison.

Then, we used one of the most popular features in the
realm of audio processing, MFCC (Mel-Frequency Cepstral
Coefficients). We were very confident in the performance of
this feature since it’s been proven in many applications that it
could work. In addition, delta (1st derivative of MFCC) and
deltaDelta (2nd derivative of MFCC) have also been widely
used along with MFCC[2][5]. However, we were aware of the
drawback that MFCC does not perform well with noisy
signals. After experimentation, we decided to use a 4.2ms
window with 80% overlap.

Lastly, it made sense for us to use pitch as a feature.
Intuitively, two different speakers should have distinct pitches.
Nonetheless, pacing, mood, and many other factors can
suppress the effectiveness of this feature.

Our goal to select the ‘best’ features would be to find a
matrix of features that should naturally generate two
non-overlapping distributions when the speakers are different
people, and vice versa. That way, a unambiguous threshold
can be drawn in between the two distributions so that the
classifier can reference this threshold and label the signal pair
as either ‘same speaker’ or ‘different speakers’.

3.1.1 Feature Selection Method

A systematic approach to evaluate these features is to utilize
the EER (Equal Error Rate) function. Ideally, we want to
minimize EER for our choice of features.

3.1.2 Feature Experimentation

We computed a series of results with the EER function using
the clean and multi training data. The scoring system in Table
2 was preliminary.

Table 2: Feature Evaluations - EER Results
EER

(Clean)
EER

(Multi)
Baseline

(F0 + MBSC)
35% 39%

Autocorrelation
(Time + Squared Sum)

45% 50%

Autocorrelation
(F0 + MBSC)

50% 48%

Mel-Spectrogram
(SSIM)

43% 49%

Mel-Spectrogram
(IMMSE)

45% 50%

MFCC + F0
(SSIM[7])

35% -

Using MFCC and pitch with some simple scoring systems
gave us the lowest EER. We then decided to further improve
on this feature by implementing Dynamic Time Warping
(DTW).

3.1.3 Dynamic Time Warping

After settling on the MFCC and pitch combination, DTW was
utilized to match the feature set[5] individually across files and
produce a distance vector for each data comparison pair. We
utilized DTW specifically on the feature vectors themselves
(MFCCs and F0), and not the time signals. Although we
briefly tried that method, the computational time was on the
order of hours from minutes for this method. In principle,
DTW should improve our MFCC and pitch features’ EER.

3.1.3 Final Feature Selection Results

We could now compare the distributions of the baseline
features and the numerous features listed above.

Figure 2: Clean Train Score Distribution (Baseline)

Figure 3: Clean Train Score Distribution (DTW MFCC + F0)

From Figures 2 and 3, MFCC related features and pitch
with DTW have significantly more distinct distributions in
which the thresholds result in lower EER than that of the
baseline. We can also look at distributions generated with
multi train-list.

Figure 4: Multi Train Score Distribution (Baseline)

Figure 5: Multi Train Score Distribution (DTW MFCC + F0)

From Figures 4 and 5, MFCC related features, pitch with
DTW have worse performance in EER than that of the
baseline as expected.

Table 3: Feature Evaluations with DTW - EER Results
EER

(Clean)
EER

(Multi)
Baseline

(F0 + MBSC)
35% 39%

MFCC + F0
(DTW distance + Sum)

22% 49%

MFCC + F0
(DTW distance + log)

22% 49%

Combos of MFCC, delta,
deltaDelta, F0

(DTW distance + sum)

22-35% 50%

PSTC + F0
(DTW distance + Sum)

37% 51%

Varying DTW number of
features with constant weights

(DTW distance + Sum)

22±0.7% 49±0.7%

Table 3 summarizes the final feature experimentation
phase. We noticed that MFCC played a critical role in this
`matrix of features’. Any other features yielded a higher ERR
than MFCC + pitch in the clean data set. At this point, we
decided to move forward with developing a more robust
scoring system. Our final selected feature is a composition of
14 MFCCs and pitch (15 features).

3.2 Scoring for Training and Testing

As discussed in our strategy, we wanted to focus on scoring
due to the opportunity to experiment. After settling on our
feature set and verifying the effectiveness using the EER, the
next step was to develop a more robust scoring method using a
variety of techniques. In order to utilize the provided ROC
curves and EER as a matric, we needed to bring our features
down to a single value. This was done by taking the sum of
the Euclidean distances from the DTW algorithm. While this
did bring the EER down significantly from the baseline, test
verification was needed on another data set. Using the
clean/clean clean/babble as a starting point, we initially got
15%/23% and 0%/100% error rates (which is discussed in the
next section).

3.2.1 Scoring Intuition and Method

The previously mentioned clean/babble results of 0%/100%
clearly indicated a normalization issue in mismatched data.
While the clean/clean results showed promising signs, the
threshold in terms of absolute value was meaningless for
babble data or any scenario in which the test and train data

might vary significantly. The reason behind this can be
illustrated in Figure 6 below.

Figure 6: Histograms of distances for the first cepstral
coefficient between clean and babble data.

In different datasets, the distances between feature
vectors can vary significantly. If the entire distribution is
shifted, then we need a way to normalize our threshold
according to the distribution shift. It is important to note our
baseline data prior to DTW was normalized, but the distance
measures themselves were not. Scaling them proved to be
difficult, as we experimented with max-min window scaling,
mean/standard deviation scaling, and a few less intuitive
techniques to little success. Table 4 below shows the results
from the best attempt which was a subtraction of the min and
factor of the max scaling techniques (CC is Clean/Clean, MB
is Multi/Babble, etc).

Table 4: DTW Sum Norm Results
Clean/
Clean

Multi/
Clean

Clean/
Babble

Multi/
Babble

9%/
30%

19%/
67%

17%/
41%

6%/
80%

Even after normalization, the results on mismatched data
were often no better than random guessing. We believe the
primary issue is the low-dimensional nature of this
comparison. We have 15 features, all with their unique
distances, and we are projecting them into a one-dimensional
space prior to comparison. This method is attempting to
discriminate two distributions from a summation of 15-D data.
But high and low distance measures across features might
cancel each other out in the process. The remainder of our
efforts focus on preserving the higher-dimensional nature of
our distance vectors during the scoring phase. Rather than
modifying the EER computation to reflect this, we abandoned
the matric for direct testing and FPR/FNR results only.

3.2.2 Unsuccessful Scoring Methods

We proceeded to attempt a wide variety of scoring methods
guided by the literature and our own intuition [5][6][7]. In brief,
we will recap a few methods that were unsuccessful either in
scoring or in the implementation themselves. All the
techniques we tried at this stage were still on the distance
vectors themselves, and not on the underlying MFCC
coefficients or F0 vector. This is in sharp contrast to most of
the literature[6][7], which utilizes many of these methods on the
features directly and then performs a comparison. In our
method, our computational time was likely significantly less
but not formally quantified. Our goal was to differentiate
between a ‘same’ and ‘different’ distribution of distance
vectors. We believe we were sacrificing potentially useful data
by not going a more traditional route, but the strategy outlined
above was to primarily focus on robust scoring within the
framework of an effective feature set.

As an example of one failed scoring system, we did
attempt to use a Gaussian Mixture Model (GMM) in a
different way from the traditional methods [9]. The traditional
method would train on a Universal Background Model
(UBM), enroll speakers, and then comprare between a local
speaker model and the UBM. We attempted to train a GMM
for two distributions on our distance matrix with the intention
of distinguishing our same and different speaker sets. This
proved to be moderately effective, but less so than our
summation baseline (with results ~35-42% clean/clean). Our
intuition behind this was not great, but we attempted this
method later in the process and did not spend significant time
investigating.

We also tried to develop a Hidden-Markov Model
(HMM) [10]. Our intention was to step back one stage in our
process and model state changes on the differences between
the two feature vectors for a given feature. This step back
would have been to account for the lack of transition data that
a single distance score between two feature vectors held. Our
plan was to instead model the absolute or euclidean distance
of the features in time after DTW was applied to align the
individual coefficient vectors. This proved to be very difficult
to implement due to the time and the complexity associated
with adapting our code base. We were unsuccessful in getting
a working model, although we believe this topic merits
revisiting considering the tremendous success of HMMs in the
field.

Prior to any of the above methods, we started by applying
various weight vectors to the distance vector and then
summing to see if this approach yielded better results. The
answer was definitely no, with EERs from 22-45%. We were
often downweighting the very feature that was discriminating
or over-weighting a distance that was spurious.

3.2.3 Supervised K-means and Scaling

The first scoring method that proved reasonably robust was
the widely used K-means method [11]. We won’t discuss the
general algorithm in detail here, but we utilized a supervised
version in which we generate a 15-D centroid from our train
data set for both the same and different distributions. Our
initial clean/clean results were 10%/19% which was much
better than the sum and a significant improvement over the
baseline. Unfortunately, the method suffered from scaling
issues as well with mismatched data. In Figure 7 below, we
visualize the K-means algorithm by plotting the centroid
values at each feature (15 of them) along with the minimum
and maximum value in the train data set.

Figure 7: K-means Centroid Values vs Clean Train Min/Max

The issue can be seen in Figure 8 below in which the
same centroid values are no longer meaningful in the babble
test data set in which the scores are much higher across the
board for same and different files.

Figure 8: K-means Centroid Values vs Babble Test Min/Max

In order to correct this, we took a statistical approach by
saving the K-means centroid values as the number of standard
deviations (sigma) away from the mean (mu) at each feature.
When testing, the centroids are mapped to the new feature
space by updating the values. Equation 1 shows the threshold
calculation (sigmas away from mean), and equation 2 shows
the new centroid remapping (which scales the centroid to the
same place in the new distribution).

Equation 1: K-means centroid thresholding

Equation 2: Centroid re-mapping

The results of this can be seen in the same visualization
in Figure 9 with the clean train centroid mapped to the babble
test data space.

Figure 9: K-means Centroid Values Mapped from Clean
Train to Babble Test

We can see the results of these scaling efforts in Table 5
below. The results are certainly reasonable and a significant

improvement over the sum of distances. But error rates are
still not much better than random guessing when using
mismatched data, nor is the multi/clean well balanced.
Although the scoring implementation was a good exercise in
statistics, slightly better performance was desired.

Table 5: DTW K-means Scaled Results
Clean/
Clean

Multi/
Clean

Clean/
Babble

Multi/
Babble

22%/
21%

28%/
57%

41%/
14%

46%/
44%

3.2.4 Mahalanobis Distance

The Mahalanobis distance is an often used multivariable
difference measure that seemed well suited for our task[12].
Again, full details will not be covered, but essentially this is a
metric for the distance of a point from a distribution in any
dimensional space. Equation 3 shows the calculation where x
is our distance vector of observation, m is the mean vector of
the distributions being compared to, and C is the inverse of the
covariance matrix of the distributions.

Equation 3: Mahalanobis distance

The benefit of this method is its consideration for
multivariate variance. A widely distributed feature calls for a
distance in terms of that variance. We can see a two
dimensional visualization of this using the first and second
cepstral coefficient in Figure 10.

Figure 10: 1st and 2nd feature Mahalanobis Score

Once more, our thresholds needed to be scaled for
mismatched data. We decided to take a novel approach again
and model our train distribution as three gaussians: same,
different, and total. We save the mean and sigmas of the same
and different distributions as adequate sufficient statistics. We
also save the mean of the total distribution for offsetting with
our test data. Figure 11 shows this statistics calculation on the
clean training data for the 1st coefficient.

Figure 11: Saving the statistics on our train data (1st
MFCC Coefficient)

Note the mean of the total distribution is not pictured but
was collected and sent as a threshold as well. When testing,
we first calculate the mean of the new distribution. We can
then compute the mean offset by subtracting the mean of the
two total distributions and offset our threshold means to align
them for our test data set as shown in Equation 4.

Equation 4: 𝞵 offset calculation for Mahalanobis
distribution scaling

Finally, we used a unique method for implementation by
randomly generating a “same” and “different” distribution of
1000 samples centered at their respective “offset” means also
using the train data sigma statistics. The test data is then
compared to each of these two distributions across all features
using the Mahalanobis distance calculation. The generated
distributions can be seen in Figure 12 below.

Figure 12: Simulated distribution at offset means for 1st
Cepstral Coefficient

Results will be shared in the next section, but this
technique gave the best results across the train/test combos,
and proved to be an effective classifier on clean data with
significant improvements over the baseline.

3.3 Noise Robustness

As was briefly discussed in the feature selection methodology,
we attempted basic filtering in preprocessing to de-noise the
signals. This proved ineffective, but our intention was to
revisit noise robustness in a more detailed way after

improving the clean baseline. Due to time, we were unable to
do so. But we did segment the multi dataset into a babble only
training data set. This allowed us to generate error rates on
babble/clean and babble/babble data to get an additional
measure on the noise robustness of our final model. The next
section includes these results.

4.Final Model and Results
Our final results are listed in Table 6 below. Our model
yielded significant improvements from the baseline on clean
test data, but was comparable to the baseline when testing
with babble noise data.

Table 6: Final Model Results
Clean/
Clean

Multi
/

Clean

Clean/
Babble

Multi/
Babble

Babble/
Clean

Babble/
Babble

Base-
Line

34%/
30%

46%/
37%

32%/
33%

43%/
42%

30%/
36%

40%/
47%

Final
Mode

l

18%/
30%

38%/
50%

12%/
27%

35%/
48%

10%/
31%

34%/
47%

Figure 13 below illustrates our final model encompassing the
major steps and flow.

Figure 13: Final Model

5. Conclusion

5.1 Lessons Learned

The scope and nature of this project allowed for numerous
learning opportunities along the way. The project goal of
better classification , novelty, and knowledge demonstration
left plenty of room for experimentation and exploration of
unique ideas. One key lesson we took away from this is the
importance of starting simple and early. We explored a lot of
unique features through image processing such as mel
spectrograms and even applied image processing to the
MFCC/F0 matrix to begin with. The literature indicated this
path was not utilized often, and for good reason we discovered
(and enumerated in the sections above). We could have
advanced much faster to our eventual feature selection had we
begun with where most of the literature left off when it came
to speech verification features.

Another major lesson was in the difficulty of both
scoring normalization and noise robustness. Scoring
normalization is a deep and nuanced exercise in domain
knowledge, statistics, and experimentation, particularly when
dealing with high dimensional and mismatched data in noisy
conditions. Adjacently, noise proved to be the most difficult
challenge that we could not address in the detail we hoped.
The attempts we did make at noise robustness proved

negligible, and the existing literature also indicates the
difficulty of training models with babble noise. Perhaps last
and most importantly, given the time constraints on the course
project, there was never enough time to attempt all the ideas
we had. We would have benefited from better triaging earlier
in the process to focus our efforts on the methods most likely
to succeed with some room for novelty, and experimentation.

5.2 Future Research

In closing, we wanted to discuss areas we would have
explored more. First and foremost, there is a vast library of
methods to attempt basic and more advanced noise mitigation
techniques that could have coupled well with our existing
approach. We would have liked to explore more basic features
with our final scoring models and attempt a fusion based
approach to achieve the best results from a variety of features
and scoring methods. Finally, we would have liked to explore
different methods on a deeper level, such as HMMs, to get
working models of comparable results for our own knowledge
and perhaps to combine complementary features and methods
for better results.

6. References
[1] Lawrence R. Rabiner and Ronald W. Schafer. 2007.

Introduction to Digital Speech Processing. Now
Publishers Inc., Hanover, MA, USA.

[2] S. K. Singh, Prof P. C. Pandey,” Features And
Techniques For Speaker Recognition”,IIT Bombay.

[3] Tan, Lee & Alwan, Abeer. (2013). Multi-band summary
correlogram-based pitch detection for noisy speech.
Speech Communication. 55. 841–856.
10.1016/j.specom.2013.03.001.

[4] Bimbot, F., Bonastre, JF., Fredouille, C. et al. A Tutorial
on Text-Independent Speaker Verification.EURASIP J.
Adv. Signal Process. 2004, 101962 (2004).

[5] Muda, Lindasalwa & Begam, Mumtaj & Elamvazuthi,
Irraivan. (2010). Voice Recognition Algorithms using
Mel Frequency Cepstral Coefficient (MFCC) and
Dynamic Time Warping (DTW) Techniques. J Comput.
2.

[6] Hourri, Soufiane & Kharroubi, Jamal. (2019). A Novel
Scoring Method Based on Distance Calculation for
Similarity Measurement in Text-Independent Speaker
Verification. Procedia Computer Science. 148. 256-265.
10.1016/j.procs.2019.01.068.

[7] “Speaker Identification Using Pitch and MFCC.” Speaker
Identification Using Pitch and MFCC - MATLAB &
Simulink,
www.mathworks.com/help/audio/ug/speaker-identificatio
n-using-pitch-and-mfcc.html.

[8] Gonzalez, Ruben. "Better than MFCC audio
classification features." The Era of Interactive Media.
Springer, New York, NY, 2013. 291-301.

[9] Douglas A. Reynolds, Thomas F. Quatieri, Robert B.
Dunn, Speaker Verification Using Adapted Gaussian
Mixture Models, Digital Signal Processing, Volume 10,
Issues 1–3, 2000,Pages 19-41,

[10] Sarkar, Achintya & Tan, Zheng-Hua. (2016). Text

Dependent Speaker Verification Using un-supervised
HMM-UBM and Temporal GMM-UBM.
10.21437/Interspeech.2016-362.

[11] Praveen, N., & Thomas, T. (2013). Text Dependent
Speaker Recognition using MFCC features and BPANN.
International Journal of Computer Applications, 74,
31-39.

[12] Prabhakaran, S. (2020, October 15). Mahalanobis
distance - understanding the math with examples
(python). Retrieved March 12, 2021, from
https://www.machinelearningplus.com/statistics/mahalan
obis-distance/

